Ask AI

You are viewing an unreleased or outdated version of the documentation

Source code for dagster_aws.pipes

import base64
import json
import os
import random
import string
from contextlib import contextmanager
from typing import TYPE_CHECKING, Any, Iterator, Mapping, Optional, Sequence

import boto3
import dagster._check as check
from botocore.exceptions import ClientError
from dagster import PipesClient
from dagster._annotations import experimental
from dagster._core.definitions.resource_annotation import TreatAsResourceParam
from dagster._core.execution.context.compute import OpExecutionContext
from dagster._core.pipes.client import (
    PipesClientCompletedInvocation,
    PipesContextInjector,
    PipesMessageReader,
    PipesParams,
)
from dagster._core.pipes.context import PipesMessageHandler
from dagster._core.pipes.utils import (
    PipesBlobStoreMessageReader,
    PipesEnvContextInjector,
    PipesLogReader,
    extract_message_or_forward_to_stdout,
    open_pipes_session,
)
from dagster_pipes import PipesDefaultMessageWriter

if TYPE_CHECKING:
    from dagster_pipes import PipesContextData

_CONTEXT_FILENAME = "context.json"


class PipesS3ContextInjector(PipesContextInjector):
    """A context injector that injects context by writing to a temporary S3 location.

    Args:
        bucket (str): The S3 bucket to write to.
        client (boto3.client): A boto3 client to use to write to S3.
        key_prefix (Optional[str]): An optional prefix to use for the S3 key. Defaults to a random
            string.

    """

    def __init__(self, *, bucket: str, client: boto3.client):
        super().__init__()
        self.bucket = check.str_param(bucket, "bucket")
        self.client = client

    @contextmanager
    def inject_context(self, context: "PipesContextData") -> Iterator[PipesParams]:
        key_prefix = "".join(random.choices(string.ascii_letters, k=30))
        key = os.path.join(key_prefix, _CONTEXT_FILENAME)
        self.client.put_object(
            Body=json.dumps(context).encode("utf-8"), Bucket=self.bucket, Key=key
        )
        yield {"bucket": self.bucket, "key": key}
        self.client.delete_object(Bucket=self.bucket, Key=key)

    def no_messages_debug_text(self) -> str:
        return (
            "Attempted to inject context via a temporary file in s3. Expected"
            " PipesS3ContextLoader to be explicitly passed to open_dagster_pipes in the external"
            " process."
        )


class PipesS3MessageReader(PipesBlobStoreMessageReader):
    """Message reader that reads messages by periodically reading message chunks from a specified S3
    bucket.

    If `log_readers` is passed, this reader will also start the passed readers
    when the first message is received from the external process.

    Args:
        interval (float): interval in seconds between attempts to download a chunk
        bucket (str): The S3 bucket to read from.
        client (WorkspaceClient): A boto3 client.
        log_readers (Optional[Sequence[PipesLogReader]]): A set of readers for logs on S3.
    """

    def __init__(
        self,
        *,
        interval: float = 10,
        bucket: str,
        client: boto3.client,
        log_readers: Optional[Sequence[PipesLogReader]] = None,
    ):
        super().__init__(
            interval=interval,
            log_readers=log_readers,
        )
        self.bucket = check.str_param(bucket, "bucket")
        self.client = client

    @contextmanager
    def get_params(self) -> Iterator[PipesParams]:
        key_prefix = "".join(random.choices(string.ascii_letters, k=30))
        yield {"bucket": self.bucket, "key_prefix": key_prefix}

    def download_messages_chunk(self, index: int, params: PipesParams) -> Optional[str]:
        key = f"{params['key_prefix']}/{index}.json"
        try:
            obj = self.client.get_object(Bucket=self.bucket, Key=key)
            return obj["Body"].read().decode("utf-8")
        except ClientError:
            return None

    def no_messages_debug_text(self) -> str:
        return (
            f"Attempted to read messages from S3 bucket {self.bucket}. Expected"
            " PipesS3MessageWriter to be explicitly passed to open_dagster_pipes in the external"
            " process."
        )


@experimental
class PipesLambdaLogsMessageReader(PipesMessageReader):
    """Message reader that consumes buffered pipes messages that were flushed on exit from the
    final 4k of logs that are returned from issuing a sync lambda invocation. This means messages
    emitted during the computation will only be processed once the lambda completes.

    Limitations: If the volume of pipes messages exceeds 4k, messages will be lost and it is
    recommended to switch to PipesS3MessageWriter & PipesS3MessageReader.
    """

    @contextmanager
    def read_messages(
        self,
        handler: PipesMessageHandler,
    ) -> Iterator[PipesParams]:
        self._handler = handler
        try:
            # use buffered stdio to shift the pipes messages to the tail of logs
            yield {PipesDefaultMessageWriter.BUFFERED_STDIO_KEY: PipesDefaultMessageWriter.STDERR}
        finally:
            self._handler = None

    def consume_lambda_logs(self, response) -> None:
        handler = check.not_none(
            self._handler, "Can only consume logs within context manager scope."
        )

        log_result = base64.b64decode(response["LogResult"]).decode("utf-8")

        for log_line in log_result.splitlines():
            extract_message_or_forward_to_stdout(handler, log_line)

    def no_messages_debug_text(self) -> str:
        return (
            "Attempted to read messages by extracting them from the tail of lambda logs directly."
        )


@experimental
class PipesLambdaEventContextInjector(PipesEnvContextInjector):
    def no_messages_debug_text(self) -> str:
        return "Attempted to inject context via the lambda event input."


[docs]@experimental class PipesLambdaClient(PipesClient, TreatAsResourceParam): """A pipes client for invoking AWS lambda. By default context is injected via the lambda input event and messages are parsed out of the 4k tail of logs. S3 Args: client (boto3.client): The boto lambda client used to call invoke. context_injector (Optional[PipesContextInjector]): A context injector to use to inject context into the lambda function. Defaults to :py:class:`PipesLambdaEventContextInjector`. message_reader (Optional[PipesMessageReader]): A message reader to use to read messages from the lambda function. Defaults to :py:class:`PipesLambdaLogsMessageReader`. """ def __init__( self, client: boto3.client, context_injector: Optional[PipesContextInjector] = None, message_reader: Optional[PipesMessageReader] = None, ): self._client = client self._message_reader = message_reader or PipesLambdaLogsMessageReader() self._context_injector = context_injector or PipesLambdaEventContextInjector() @classmethod def _is_dagster_maintained(cls) -> bool: return True def run( self, *, function_name: str, event: Mapping[str, Any], context: OpExecutionContext, ): """Synchronously invoke a lambda function, enriched with the pipes protocol. Args: function_name (str): The name of the function to use. event (Mapping[str, Any]): A JSON serializable object to pass as input to the lambda. context (OpExecutionContext): The context of the currently executing Dagster op or asset. """ with open_pipes_session( context=context, message_reader=self._message_reader, context_injector=self._context_injector, ) as session: other_kwargs = {} if isinstance(self._message_reader, PipesLambdaLogsMessageReader): other_kwargs["LogType"] = "Tail" if isinstance(self._context_injector, PipesLambdaEventContextInjector): payload_data = { **event, **session.get_bootstrap_env_vars(), } else: payload_data = event response = self._client.invoke( FunctionName=function_name, InvocationType="RequestResponse", Payload=json.dumps(payload_data), **other_kwargs, ) if isinstance(self._message_reader, PipesLambdaLogsMessageReader): self._message_reader.consume_lambda_logs(response) if "FunctionError" in response: err_payload = json.loads(response["Payload"].read().decode("utf-8")) raise Exception( f"Lambda Function Error ({response['FunctionError']}):\n{json.dumps(err_payload, indent=2)}" ) # should probably have a way to return the lambda result payload return PipesClientCompletedInvocation(session)